2025-01-07 19:22:56 +01:00
|
|
|
from main import analysis_mode
|
2025-01-05 22:53:09 +01:00
|
|
|
|
2025-01-07 19:22:56 +01:00
|
|
|
if analysis_mode == "plan":
|
|
|
|
dataset_path = "data/catalogueSymbol"
|
|
|
|
allowed_classes = ['Figure1', 'Figure2', 'Figure3', 'Figure4', 'Figure5', 'Figure6']
|
|
|
|
model_path = "models/bayesian_modelPLAN.pth"
|
|
|
|
else:
|
2025-01-05 22:53:09 +01:00
|
|
|
dataset_path = "data/catalogue"
|
2025-01-07 19:22:56 +01:00
|
|
|
allowed_classes = ['2', 'd', 'I', 'n', 'o', 'u']
|
|
|
|
model_path = "models/bayesian_modelPAGE.pth"
|
2025-01-05 22:53:09 +01:00
|
|
|
|
2025-01-07 19:22:56 +01:00
|
|
|
from src.classifiers.bayesian import BayesianClassifier
|
|
|
|
from collections import defaultdict
|
|
|
|
import os
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
2025-01-05 22:53:09 +01:00
|
|
|
|
2025-01-07 19:22:56 +01:00
|
|
|
# Initialisation
|
|
|
|
bayesian_model = BayesianClassifier()
|
|
|
|
|
|
|
|
print("Début de l'entraînement...")
|
|
|
|
class_features = defaultdict(list)
|
|
|
|
total_images = 0
|
|
|
|
|
|
|
|
# Parcours des classes dans le dataset
|
|
|
|
for class_name in os.listdir(dataset_path):
|
|
|
|
if class_name not in allowed_classes:
|
|
|
|
continue
|
|
|
|
|
|
|
|
class_folder_path = os.path.join(dataset_path, class_name)
|
|
|
|
if not os.path.isdir(class_folder_path):
|
|
|
|
continue
|
|
|
|
|
|
|
|
if class_name not in bayesian_model.classes:
|
|
|
|
bayesian_model.classes.append(class_name)
|
|
|
|
|
|
|
|
for image_name in os.listdir(class_folder_path):
|
|
|
|
image_path = os.path.join(class_folder_path, image_name)
|
|
|
|
image = cv2.imread(image_path)
|
|
|
|
|
|
|
|
if image is not None:
|
|
|
|
features = bayesian_model.extract_features(image)
|
|
|
|
for feature in features:
|
|
|
|
class_features[class_name].append(feature)
|
|
|
|
total_images += 1
|
|
|
|
|
|
|
|
# Calcul des statistiques pour chaque classe
|
|
|
|
for class_name in bayesian_model.classes:
|
|
|
|
if class_name in class_features:
|
|
|
|
features = np.array(class_features[class_name])
|
|
|
|
bayesian_model.feature_means[class_name] = np.mean(features, axis=0)
|
|
|
|
bayesian_model.feature_variances[class_name] = np.var(features, axis=0) + 1e-6
|
|
|
|
bayesian_model.class_priors[class_name] = len(features) / total_images
|
|
|
|
|
|
|
|
print("Entraînement terminé.")
|
|
|
|
bayesian_model.save_model(model_path)
|
|
|
|
print(f"Modèle sauvegardé dans : {model_path}")
|