from main import analysis_mode if analysis_mode == "plan": dataset_path = "data/catalogueSymbol" allowed_classes = ['Figure1', 'Figure2', 'Figure3', 'Figure4', 'Figure5', 'Figure6'] model_path = "models/bayesian_modelPLAN.pth" else: dataset_path = "data/catalogue" allowed_classes = ['2', 'd', 'I', 'n', 'o', 'u'] model_path = "models/bayesian_modelPAGE.pth" from src.classifiers.bayesian import BayesianClassifier from collections import defaultdict import os import cv2 import numpy as np # Initialisation bayesian_model = BayesianClassifier() print("Début de l'entraînement...") class_features = defaultdict(list) total_images = 0 # Parcours des classes dans le dataset for class_name in os.listdir(dataset_path): if class_name not in allowed_classes: continue class_folder_path = os.path.join(dataset_path, class_name) if not os.path.isdir(class_folder_path): continue if class_name not in bayesian_model.classes: bayesian_model.classes.append(class_name) for image_name in os.listdir(class_folder_path): image_path = os.path.join(class_folder_path, image_name) image = cv2.imread(image_path) if image is not None: features = bayesian_model.extract_features(image) for feature in features: class_features[class_name].append(feature) total_images += 1 # Calcul des statistiques pour chaque classe for class_name in bayesian_model.classes: if class_name in class_features: features = np.array(class_features[class_name]) bayesian_model.feature_means[class_name] = np.mean(features, axis=0) bayesian_model.feature_variances[class_name] = np.var(features, axis=0) + 1e-6 bayesian_model.class_priors[class_name] = len(features) / total_images print("Entraînement terminé.") bayesian_model.save_model(model_path) print(f"Modèle sauvegardé dans : {model_path}")