21 lines
715 B
Python
21 lines
715 B
Python
import torch.nn as nn
|
|
|
|
# Define CNN Model
|
|
class CatDogClassifier(nn.Module):
|
|
def __init__(self, img_size=128):
|
|
super(CatDogClassifier, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
|
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
self.fc1 = nn.Linear(64 * (img_size//4) * (img_size//4), 128)
|
|
self.fc2 = nn.Linear(128, 2)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.pool(self.relu(self.conv1(x)))
|
|
x = self.pool(self.relu(self.conv2(x)))
|
|
x = x.view(x.size(0), -1) # Flattening
|
|
x = self.relu(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return x
|