import torch.nn as nn # Define CNN Model class CatDogClassifier(nn.Module): def __init__(self, img_size=128): super(CatDogClassifier, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(64 * (img_size//4) * (img_size//4), 128) self.fc2 = nn.Linear(128, 2) self.relu = nn.ReLU() def forward(self, x): x = self.pool(self.relu(self.conv1(x))) x = self.pool(self.relu(self.conv2(x))) x = x.view(x.size(0), -1) # Flattening x = self.relu(self.fc1(x)) x = self.fc2(x) return x