import os import cv2 import numpy as np import torch from collections import defaultdict import matplotlib.pyplot as plt class BayesianClassifier: def __init__(self): self.feature_means = {} self.feature_variances = {} self.class_priors = {} self.classes = [] # Initialize HOG descriptor with standard parameters self.hog = cv2.HOGDescriptor( _winSize=(28, 28), _blockSize=(8, 8), _blockStride=(4, 4), _cellSize=(8, 8), _nbins=9 ) def extract_features(self, image): try: # Convert image to grayscale if len(image.shape) == 3 and image.shape[2] == 3: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray_image = image # Apply adaptive thresholding binary_image = cv2.adaptiveThreshold( gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2 ) # Find contours contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: print("No contours found.") return np.array([]) features = [] for contour in contours: if cv2.contourArea(contour) < 22: continue x, y, w, h = cv2.boundingRect(contour) letter_image = gray_image[y:y + h, x:x + w] letter_image = cv2.resize(letter_image, (28, 28)) # Compute HOG features hog_features = self.hog.compute(letter_image) features.append(hog_features.flatten()) features = np.array(features) if features.size == 0: print("No features extracted.") return np.array([]) norms = np.linalg.norm(features, axis=1, keepdims=True) features = features / np.where(norms > 1e-6, norms, 1) return features except Exception as e: print(f"Error in extract_features: {e}") return np.array([]) def train(self, dataset_path): class_features = defaultdict(list) total_images = 0 for class_name in os.listdir(dataset_path): class_folder_path = os.path.join(dataset_path, class_name) if os.path.isdir(class_folder_path): if class_name not in self.classes: self.classes.append(class_name) for img_name in os.listdir(class_folder_path): img_path = os.path.join(class_folder_path, img_name) if os.path.isfile(img_path): try: image = cv2.imread(img_path) if image is not None: features = self.extract_features(image) if features.size > 0: for feature in features: class_features[class_name].append(feature) total_images += 1 else: print(f"No features extracted for {img_path}") else: print(f"Failed to load image: {img_path}") except Exception as e: print(f"Error processing {img_path}: {e}") for class_name in self.classes: if class_name in class_features: features = np.array(class_features[class_name]) self.feature_means[class_name] = np.mean(features, axis=0) self.feature_variances[class_name] = np.var(features, axis=0) + 1e-6 self.class_priors[class_name] = len(features) / total_images print("Training completed for classes:", self.classes) def save_model(self, model_path): model_data = { "feature_means": self.feature_means, "feature_variances": self.feature_variances, "class_priors": self.class_priors, "classes": self.classes } if not os.path.exists(os.path.dirname(model_path)): os.makedirs(os.path.dirname(model_path)) torch.save(model_data, model_path) print(f"Model saved to {model_path}") def load_model(self, model_path): if os.path.exists(model_path): model_data = torch.load(model_path, weights_only=False) self.feature_means = model_data["feature_means"] self.feature_variances = model_data["feature_variances"] self.class_priors = model_data["class_priors"] self.classes = model_data["classes"] print(f"Model loaded from {model_path}") else: print(f"No model found at {model_path}.") def predict(self, image): try: features = self.extract_features(image) if features.size == 0: print("Empty features, skipping prediction.") return None posteriors = {} for class_name in self.classes: mean = self.feature_means[class_name] variance = self.feature_variances[class_name] prior = self.class_priors[class_name] likelihood = -0.5 * np.sum(((features - mean) ** 2) / variance + np.log(2 * np.pi * variance)) posterior = likelihood + np.log(prior) posteriors[class_name] = posterior return max(posteriors, key=posteriors.get) except Exception as e: print(f"Error in prediction: {e}") return None def visualize(self): if not self.classes: print("No classes to visualize.") return for class_name in self.classes: mean_features = self.feature_means[class_name] plt.figure(figsize=(10, 4)) plt.title(f"Mean features for class: {class_name}") plt.plot(mean_features) plt.xlabel("Feature Index") plt.ylabel("Mean Value") plt.grid(True) plt.show()