Bayesian final version + choix du fichier analysé

This commit is contained in:
yanis.bouarfa 2025-01-07 22:39:27 +01:00
parent 7abdb91d06
commit 922b9acf18
4 changed files with 83 additions and 60 deletions

22
main.py
View file

@ -1,16 +1,22 @@
import os
import cv2
from src.pipeline import ObjectDetectionPipeline
from src.classifiers.bayesian import BayesianClassifier
from collections import defaultdict
# Définissez le mode d'analyse ici : "plan" ou "page"
analysis_mode = "plan"
if __name__ == "__main__":
# Chemin vers le modèle entraîné
# Configuration basée sur le mode
if analysis_mode == "plan":
model_path = "models/bayesian_modelPLAN.pth"
image_path = "data/plan.png"
else:
model_path = "models/bayesian_modelPAGE.pth"
image_path = "data/page.png"
# Chargement du modèle bayésien
print(f"Chargement du modèle bayésien depuis {model_path}")
bayesian_model = BayesianClassifier()
bayesian_model = BayesianClassifier(mode=analysis_mode)
try:
bayesian_model.load_model(model_path)
print(f"Modèle bayésien chargé depuis {model_path}")
@ -18,8 +24,7 @@ if __name__ == "__main__":
print(f"Erreur lors du chargement du modèle : {e}")
exit(1)
# Chemin de l'image de test
image_path = "data/page.png"
# Vérification de l'existence de l'image
if not os.path.exists(image_path):
print(f"L'image de test {image_path} n'existe pas.")
exit(1)
@ -33,6 +38,9 @@ if __name__ == "__main__":
print("Initialisation de la pipeline...")
pipeline = ObjectDetectionPipeline(image_path=image_path, model=bayesian_model, output_dir=output_dir)
# Définition du mode (plan ou page)
pipeline.set_mode(analysis_mode)
# Chargement de l'image
print("Chargement de l'image...")
try:
@ -45,7 +53,7 @@ if __name__ == "__main__":
print("Détection et classification des objets...")
try:
class_counts, detected_objects = pipeline.detect_and_classify_objects()
print("Classes détectées :", class_counts) # Added debug info
print("Classes détectées :", class_counts)
except Exception as e:
print(f"Erreur lors de la détection/classification : {e}")
exit(1)

View file

@ -7,43 +7,51 @@ import matplotlib.pyplot as plt
class BayesianClassifier:
def __init__(self):
def __init__(self, mode="page"):
self.feature_means = {}
self.feature_variances = {}
self.class_priors = {}
self.classes = []
self.allowed_classes = (
['Figure1', 'Figure2', 'Figure3', 'Figure4', 'Figure5', 'Figure6']
if mode == "plan"
else ['2', 'd', 'I', 'n', 'o', 'u']
)
# Initialize HOG descriptor with standard parameters
self.hog = cv2.HOGDescriptor(
_winSize=(28, 28),
_blockSize=(8, 8),
_blockStride=(4, 4),
_cellSize=(8, 8),
_nbins=9
_nbins=9,
)
def extract_features(self, image):
try:
# Convert image to grayscale
# Convert to grayscale if image is RGB
if len(image.shape) == 3 and image.shape[2] == 3:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray_image = image
# Apply adaptive thresholding for better segmentation
# Apply adaptive thresholding for segmentation
binary_image = cv2.adaptiveThreshold(
gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2
)
# Find contours
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours, _ = cv2.findContours(
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
if not contours:
print("No contours found.")
return np.array([])
features = []
for contour in contours:
if cv2.contourArea(contour) < 20: # Lowered area threshold
if cv2.contourArea(contour) < 20: # Filter small areas
continue
x, y, w, h = cv2.boundingRect(contour)
@ -59,7 +67,7 @@ class BayesianClassifier:
print("No features extracted.")
return np.array([])
# Normalize features for better consistency
# Normalize features
norms = np.linalg.norm(features, axis=1, keepdims=True)
features = features / np.where(norms > 1e-6, norms, 1)
@ -70,11 +78,10 @@ class BayesianClassifier:
def train(self, dataset_path):
class_features = defaultdict(list)
total_images = 0
total_samples = 0
allowed_classes = ['2', 'd', 'I', 'n', 'o', 'u'] # Modifiez selon vos besoins
for class_name in os.listdir(dataset_path):
if class_name not in allowed_classes:
if class_name not in self.allowed_classes:
continue
class_folder_path = os.path.join(dataset_path, class_name)
@ -85,27 +92,25 @@ class BayesianClassifier:
for img_name in os.listdir(class_folder_path):
img_path = os.path.join(class_folder_path, img_name)
if os.path.isfile(img_path):
try:
image = cv2.imread(img_path)
if image is not None:
features = self.extract_features(image)
if features.size > 0:
for feature in features:
class_features[class_name].append(feature)
total_images += 1
total_samples += len(features)
else:
print(f"No features extracted for {img_path}")
else:
print(f"Failed to load image: {img_path}")
except Exception as e:
print(f"Error processing {img_path}: {e}")
# Compute means, variances, and priors
for class_name in self.classes:
if class_name in class_features:
features = np.array(class_features[class_name])
self.feature_means[class_name] = np.mean(features, axis=0)
self.feature_variances[class_name] = np.var(features, axis=0) + 1e-6
self.class_priors[class_name] = len(features) / total_images
self.feature_variances[class_name] = np.var(features, axis=0) + 1e-6 # Avoid zero variance
self.class_priors[class_name] = len(features) / total_samples
print("Training completed for classes:", self.classes)
@ -114,16 +119,15 @@ class BayesianClassifier:
"feature_means": self.feature_means,
"feature_variances": self.feature_variances,
"class_priors": self.class_priors,
"classes": self.classes
"classes": self.classes,
}
if not os.path.exists(os.path.dirname(model_path)):
os.makedirs(os.path.dirname(model_path))
os.makedirs(os.path.dirname(model_path), exist_ok=True)
torch.save(model_data, model_path)
print(f"Model saved to {model_path}")
def load_model(self, model_path):
if os.path.exists(model_path):
model_data = torch.load(model_path, weights_only=False)
model_data = torch.load(model_path)
self.feature_means = model_data["feature_means"]
self.feature_variances = model_data["feature_variances"]
self.class_priors = model_data["class_priors"]
@ -132,7 +136,7 @@ class BayesianClassifier:
else:
print(f"No model found at {model_path}.")
def predict(self, image, threshold=0.3): # Lowered threshold
def predict(self, image, threshold=0.3):
try:
features = self.extract_features(image)
if features.size == 0:
@ -145,14 +149,17 @@ class BayesianClassifier:
variance = self.feature_variances[class_name]
prior = self.class_priors[class_name]
likelihood = -0.5 * np.sum(((features - mean) ** 2) / variance + np.log(2 * np.pi * variance))
posterior = likelihood + np.log(prior)
posteriors[class_name] = posterior
# Compute log-likelihood
log_likelihood = -0.5 * np.sum(
((features - mean) ** 2) / variance + np.log(2 * np.pi * variance),
axis=1,
)
posterior = log_likelihood + np.log(prior)
posteriors[class_name] = np.sum(posterior)
max_class = max(posteriors, key=posteriors.get)
max_posterior = posteriors[max_class]
print(f"Class: {max_class}, Posterior: {max_posterior}") # Added debug info
if max_posterior < threshold:
return None
return max_class

View file

@ -5,8 +5,7 @@ from collections import defaultdict
class ObjectDetectionPipeline:
def __init__(self, image_path, model=None, output_dir="output", min_contour_area=20, binary_threshold=None):
# Initialize the object detection pipeline
def __init__(self, image_path, model=None, output_dir="output", mode="page", min_contour_area=20, binary_threshold=None):
self.image_path = image_path
self.image = None
self.binary_image = None
@ -14,19 +13,28 @@ class ObjectDetectionPipeline:
self.output_dir = output_dir
self.min_contour_area = min_contour_area
self.binary_threshold = binary_threshold
self.mode = mode # Default mode is "page"
self.annotated_output_path = os.path.join(self.output_dir, f"annotated_{os.path.basename(image_path)}")
self.threshold = -395000 if mode == "plan" else -65000
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
def set_mode(self, mode):
"""Set the detection mode (page or plan)."""
if mode not in ["page", "plan"]:
raise ValueError("Mode must be 'page' or 'plan'.")
self.mode = mode
self.threshold = -395000 if mode == "plan" else -65000
print(f"Mode set to: {self.mode}, Threshold set to: {self.threshold}")
def load_image(self):
# Load the specified image
self.image = cv2.imread(self.image_path)
if self.image is None:
raise FileNotFoundError(f"Image {self.image_path} not found.")
return self.image
def preprocess_image(self):
# Preprocess the image for inference
channels = cv2.split(self.image)
binary_images = []
@ -43,7 +51,6 @@ class ObjectDetectionPipeline:
return binary_image
def detect_and_classify_objects(self):
# Detect and classify objects in the image
if self.model is None:
raise ValueError("No classification model provided.")
@ -60,7 +67,7 @@ class ObjectDetectionPipeline:
x, y, w, h = cv2.boundingRect(contour)
letter_image = self.image[y:y + h, x:x + w]
predicted_class = self.model.predict(letter_image, threshold=-65000) # Adjusted threshold
predicted_class = self.model.predict(letter_image, threshold=self.threshold)
if predicted_class is None:
print("Object ignored due to low resemblance.")
continue
@ -71,7 +78,6 @@ class ObjectDetectionPipeline:
return dict(sorted(class_counts.items())), detected_objects
def save_results(self, class_counts, detected_objects):
# Save detection and classification results
binary_output_path = os.path.join(self.output_dir, "binary_image.jpg")
cv2.imwrite(binary_output_path, self.binary_image)
@ -80,8 +86,7 @@ class ObjectDetectionPipeline:
cv2.rectangle(annotated_image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(annotated_image, str(predicted_class), (x, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
annotated_output_path = os.path.join(self.output_dir, "annotated_page.jpg")
cv2.imwrite(annotated_output_path, annotated_image)
cv2.imwrite(self.annotated_output_path, annotated_image)
results_text_path = os.path.join(self.output_dir, "results.txt")
with open(results_text_path, "w") as f:
@ -89,7 +94,6 @@ class ObjectDetectionPipeline:
f.write(f"{class_name}: {count}\n")
def display_results(self, class_counts, detected_objects):
# Display and save the results
self.save_results(class_counts, detected_objects)
plt.figure(figsize=(10, 5))

View file

@ -1,16 +1,24 @@
import os
import argparse # Ajouté pour les arguments
from collections import defaultdict
import numpy as np
import cv2
from src.classifiers.bayesian import BayesianClassifier
if __name__ == "__main__":
# Chemin vers le dataset d'entraînement
dataset_path = "data/catalogue"
# Analyse des arguments
parser = argparse.ArgumentParser(description="Train Bayesian model.")
parser.add_argument("--mode", type=str, choices=["page", "plan"], default="page", help="Mode de fonctionnement : 'page' ou 'plan'.")
args = parser.parse_args()
# Configuration en fonction du mode
mode = args.mode
dataset_path = f"data/catalogue{'' if mode == 'page' else 'Symbol'}"
allowed_classes = ['Figure1', 'Figure2', 'Figure3', 'Figure4', 'Figure5', 'Figure6'] if mode == "plan" else ['2', 'd', 'I', 'n', 'o', 'u']
model_path = f"models/bayesian_model{mode.upper()}.pth"
# Initialisation du classifieur Bayésien
bayesian_model = BayesianClassifier()
bayesian_model = BayesianClassifier(mode=mode)
print("Début de l'entraînement...")
@ -18,9 +26,6 @@ if __name__ == "__main__":
class_features = defaultdict(list)
total_images = 0
# Liste des classes autorisées
allowed_classes = ['2', 'd', 'I', 'n', 'o', 'u'] # Classes spécifiques au projet
# Parcours des classes dans le dataset
for class_name in os.listdir(dataset_path):
if class_name not in allowed_classes:
@ -57,6 +62,5 @@ if __name__ == "__main__":
print("Entraînement terminé.")
# Sauvegarde du modèle entraîné
model_path = "models/bayesian_modelPAGE.pth"
bayesian_model.save_model(model_path)
print(f"Modèle sauvegardé dans : {model_path}")