Automatisation du choix de l'analyse du plan ou de la page

This commit is contained in:
yanis.bouarfa 2025-01-07 19:22:56 +01:00
parent 04f563ee8e
commit 5e601c889e
4 changed files with 165 additions and 154 deletions

68
main.py
View file

@ -1,12 +1,31 @@
import os import os
import cv2 import subprocess
from src.pipeline import ObjectDetectionPipeline from src.pipeline import ObjectDetectionPipeline
from src.classifiers.bayesian import BayesianClassifier from src.classifiers.bayesian import BayesianClassifier
from collections import defaultdict from collections import defaultdict
# Définissez le mode d'analyse ici : "plan" ou "page"
analysis_mode = "plan"
if __name__ == "__main__": if __name__ == "__main__":
# Chemin vers le modèle entraîné # Configuration basée sur le mode
if analysis_mode == "plan":
dataset_path = "data/catalogueSymbol"
model_path = "models/bayesian_modelPLAN.pth"
image_path = "data/plan.png"
else:
dataset_path = "data/catalogue"
model_path = "models/bayesian_modelPAGE.pth" model_path = "models/bayesian_modelPAGE.pth"
image_path = "data/page.png"
# Lancer l'entraînement via train.py
print(f"Lancement de l'entraînement pour le mode '{analysis_mode}'...")
try:
subprocess.run(["python", "train.py", dataset_path, model_path], check=True)
print(f"Entraînement terminé et modèle sauvegardé dans {model_path}")
except subprocess.CalledProcessError as e:
print(f"Erreur lors de l'exécution de train.py : {e}")
exit(1)
# Chargement du modèle bayésien # Chargement du modèle bayésien
print(f"Chargement du modèle bayésien depuis {model_path}") print(f"Chargement du modèle bayésien depuis {model_path}")
@ -18,8 +37,7 @@ if __name__ == "__main__":
print(f"Erreur lors du chargement du modèle : {e}") print(f"Erreur lors du chargement du modèle : {e}")
exit(1) exit(1)
# Chemin de l'image de test # Vérification de l'existence de l'image
image_path = "data/page.png"
if not os.path.exists(image_path): if not os.path.exists(image_path):
print(f"L'image de test {image_path} n'existe pas.") print(f"L'image de test {image_path} n'existe pas.")
exit(1) exit(1)
@ -33,6 +51,9 @@ if __name__ == "__main__":
print("Initialisation de la pipeline...") print("Initialisation de la pipeline...")
pipeline = ObjectDetectionPipeline(image_path=image_path, model=bayesian_model, output_dir=output_dir) pipeline = ObjectDetectionPipeline(image_path=image_path, model=bayesian_model, output_dir=output_dir)
# Définition du mode (plan ou page)
pipeline.set_mode(analysis_mode)
# Chargement de l'image # Chargement de l'image
print("Chargement de l'image...") print("Chargement de l'image...")
try: try:
@ -45,6 +66,7 @@ if __name__ == "__main__":
print("Détection et classification des objets...") print("Détection et classification des objets...")
try: try:
class_counts, detected_objects = pipeline.detect_and_classify_objects() class_counts, detected_objects = pipeline.detect_and_classify_objects()
print("Classes détectées :", class_counts)
except Exception as e: except Exception as e:
print(f"Erreur lors de la détection/classification : {e}") print(f"Erreur lors de la détection/classification : {e}")
exit(1) exit(1)
@ -53,42 +75,4 @@ if __name__ == "__main__":
print("Sauvegarde et affichage des résultats...") print("Sauvegarde et affichage des résultats...")
pipeline.display_results(class_counts, detected_objects) pipeline.display_results(class_counts, detected_objects)
# Chargement des comptes réels manuels avec distinction entre minuscule et majuscule
true_counts_manual = {
'A_': 30, 'A': 30, 'B_': 4, 'B': 0, 'C_': 14, 'C': 14, 'D_': 17, 'D': 17,
'E_': 68, 'E': 69, 'F_': 2, 'F': 2, 'G_': 8, 'G': 8, 'H_': 9, 'H': 9,
'I_': 26, 'I': 25, 'J_': 1, 'J': 0, 'K_': 0, 'K': 0, 'L_': 20, 'L': 19,
'M_': 15, 'M': 15, 'N_': 30, 'N': 29, 'O_': 37, 'O': 37, 'P_': 23, 'P': 22,
'Q_': 5, 'Q': 4, 'R_': 28, 'R': 27, 'S_': 26, 'S': 25, 'T_': 38, 'T': 38,
'U_': 25, 'U': 25, 'V_': 7, 'V': 6, 'W_': 1, 'W': 0, 'X_': 2, 'X': 2,
'Y_': 6, 'Y': 5, 'Z_': 3, 'Z': 2,
'1': 8, '2': 11, '3': 2, '4': 1, '5': 2, '6': 1, '7': 1, '8': 3, '9': 3
}
# Chargement des résultats détectés depuis results.txt
results_path = "output/results.txt"
detected_counts = defaultdict(int)
if os.path.exists(results_path):
with open(results_path, "r") as f:
for line in f:
char, count = line.strip().split(":")
detected_counts[char.strip()] = int(count.strip())
else:
print(f"Le fichier {results_path} n'existe pas.")
exit(1)
# Calcul du pourcentage de précision
print("Calcul du pourcentage de précision...")
total_true = sum(true_counts_manual.values())
common_keys = set(true_counts_manual.keys()) & set(detected_counts.keys())
correctly_detected = sum(min(detected_counts[char], true_counts_manual[char]) for char in common_keys)
precision = (correctly_detected / total_true) * 100 if total_true > 0 else 0
# Afficher les résultats
print("\nRésultats de comparaison :")
for char in sorted(common_keys):
print(f"{char}: True={true_counts_manual[char]}, Detected={detected_counts[char]}")
print(f"\nPrécision globale : {precision:.2f}%")
print(f"Les résultats ont été sauvegardés dans le dossier : {output_dir}") print(f"Les résultats ont été sauvegardés dans le dossier : {output_dir}")

View file

@ -12,6 +12,7 @@ class BayesianClassifier:
self.feature_variances = {} self.feature_variances = {}
self.class_priors = {} self.class_priors = {}
self.classes = [] self.classes = []
self.mode = None # Défini par le main.py ("plan" ou "page")
# Initialize HOG descriptor with standard parameters # Initialize HOG descriptor with standard parameters
self.hog = cv2.HOGDescriptor( self.hog = cv2.HOGDescriptor(
@ -22,61 +23,51 @@ class BayesianClassifier:
_nbins=9 _nbins=9
) )
def set_mode(self, mode):
"""
Configure le mode d'analyse (plan ou page) et ajuste les classes autorisées.
"""
self.mode = mode
if mode == "plan":
self.classes = ['Figure1', 'Figure2', 'Figure3', 'Figure4', 'Figure5', 'Figure6']
elif mode == "page":
self.classes = ['2', 'd', 'I', 'n', 'o', 'u']
else:
raise ValueError(f"Mode inconnu : {mode}")
def extract_features(self, image): def extract_features(self, image):
"""
Extrait des caractéristiques d'une image (via HOG et normalisation).
"""
try: try:
# Convert image to grayscale
if len(image.shape) == 3 and image.shape[2] == 3: if len(image.shape) == 3 and image.shape[2] == 3:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else: else:
gray_image = image gray_image = image
# Apply adaptive thresholding resized_image = cv2.resize(gray_image, (28, 28))
binary_image = cv2.adaptiveThreshold( hog_features = self.hog.compute(resized_image)
gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2
)
# Find contours features = hog_features.flatten()
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) norm = np.linalg.norm(features)
if not contours: return features / norm if norm > 1e-6 else features
print("No contours found.")
return np.array([])
features = []
for contour in contours:
if cv2.contourArea(contour) < 22:
continue
x, y, w, h = cv2.boundingRect(contour)
letter_image = gray_image[y:y + h, x:x + w]
letter_image = cv2.resize(letter_image, (28, 28))
# Compute HOG features
hog_features = self.hog.compute(letter_image)
features.append(hog_features.flatten())
features = np.array(features)
if features.size == 0:
print("No features extracted.")
return np.array([])
norms = np.linalg.norm(features, axis=1, keepdims=True)
features = features / np.where(norms > 1e-6, norms, 1)
return features
except Exception as e: except Exception as e:
print(f"Error in extract_features: {e}") print(f"Error in extract_features: {e}")
return np.array([]) return np.array([])
def train(self, dataset_path): def train(self, dataset_path):
"""
Entraîne le modèle bayésien sur un dataset structuré en sous-dossiers par classe.
"""
class_features = defaultdict(list) class_features = defaultdict(list)
total_images = 0 total_images = 0
for class_name in os.listdir(dataset_path): for class_name in os.listdir(dataset_path):
if class_name not in self.classes:
continue
class_folder_path = os.path.join(dataset_path, class_name) class_folder_path = os.path.join(dataset_path, class_name)
if os.path.isdir(class_folder_path): if os.path.isdir(class_folder_path):
if class_name not in self.classes:
self.classes.append(class_name)
for img_name in os.listdir(class_folder_path): for img_name in os.listdir(class_folder_path):
img_path = os.path.join(class_folder_path, img_name) img_path = os.path.join(class_folder_path, img_name)
if os.path.isfile(img_path): if os.path.isfile(img_path):
@ -85,11 +76,8 @@ class BayesianClassifier:
if image is not None: if image is not None:
features = self.extract_features(image) features = self.extract_features(image)
if features.size > 0: if features.size > 0:
for feature in features: class_features[class_name].append(features)
class_features[class_name].append(feature)
total_images += 1 total_images += 1
else:
print(f"No features extracted for {img_path}")
else: else:
print(f"Failed to load image: {img_path}") print(f"Failed to load image: {img_path}")
except Exception as e: except Exception as e:
@ -105,6 +93,9 @@ class BayesianClassifier:
print("Training completed for classes:", self.classes) print("Training completed for classes:", self.classes)
def save_model(self, model_path): def save_model(self, model_path):
"""
Sauvegarde le modèle entraîné dans un fichier.
"""
model_data = { model_data = {
"feature_means": self.feature_means, "feature_means": self.feature_means,
"feature_variances": self.feature_variances, "feature_variances": self.feature_variances,
@ -117,8 +108,11 @@ class BayesianClassifier:
print(f"Model saved to {model_path}") print(f"Model saved to {model_path}")
def load_model(self, model_path): def load_model(self, model_path):
"""
Charge un modèle existant depuis un fichier.
"""
if os.path.exists(model_path): if os.path.exists(model_path):
model_data = torch.load(model_path, weights_only=False) model_data = torch.load(model_path)
self.feature_means = model_data["feature_means"] self.feature_means = model_data["feature_means"]
self.feature_variances = model_data["feature_variances"] self.feature_variances = model_data["feature_variances"]
self.class_priors = model_data["class_priors"] self.class_priors = model_data["class_priors"]
@ -127,7 +121,10 @@ class BayesianClassifier:
else: else:
print(f"No model found at {model_path}.") print(f"No model found at {model_path}.")
def predict(self, image): def predict(self, image, threshold=-65000):
"""
Prédit la classe d'une image en utilisant le modèle bayésien.
"""
try: try:
features = self.extract_features(image) features = self.extract_features(image)
if features.size == 0: if features.size == 0:
@ -144,12 +141,21 @@ class BayesianClassifier:
posterior = likelihood + np.log(prior) posterior = likelihood + np.log(prior)
posteriors[class_name] = posterior posteriors[class_name] = posterior
return max(posteriors, key=posteriors.get) max_class = max(posteriors, key=posteriors.get)
max_posterior = posteriors[max_class]
print(f"Class: {max_class}, Posterior: {max_posterior}")
if max_posterior < threshold:
return None
return max_class
except Exception as e: except Exception as e:
print(f"Error in prediction: {e}") print(f"Error in prediction: {e}")
return None return None
def visualize(self): def visualize(self):
"""
Visualise les moyennes des caractéristiques par classe.
"""
if not self.classes: if not self.classes:
print("No classes to visualize.") print("No classes to visualize.")
return return

View file

@ -5,15 +5,9 @@ from collections import defaultdict
class ObjectDetectionPipeline: class ObjectDetectionPipeline:
def __init__(self, image_path, model=None, output_dir="output", min_contour_area=50, binary_threshold=127): def __init__(self, image_path, model=None, output_dir="output", min_contour_area=20, binary_threshold=None):
""" """
Initialisation de la pipeline de détection d'objets. Initialise le pipeline de détection et classification d'objets.
:param image_path: Chemin de l'image à traiter
:param model: Modèle de classification à utiliser
:param output_dir: Dossier les résultats seront sauvegardés
:param min_contour_area: Aire minimale des contours à prendre en compte
:param binary_threshold: Seuil de binarisation pour les canaux
""" """
self.image_path = image_path self.image_path = image_path
self.image = None self.image = None
@ -22,23 +16,45 @@ class ObjectDetectionPipeline:
self.output_dir = output_dir self.output_dir = output_dir
self.min_contour_area = min_contour_area self.min_contour_area = min_contour_area
self.binary_threshold = binary_threshold self.binary_threshold = binary_threshold
self.mode = None # Défini par le main.py ("plan" ou "page")
if not os.path.exists(self.output_dir): if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir) os.makedirs(self.output_dir)
def set_mode(self, mode):
"""
Configure le mode d'analyse (plan ou page).
"""
self.mode = mode
if self.mode == "plan":
self.annotated_output_path = os.path.join(self.output_dir, "annotated_plan.jpg")
self.detection_threshold = -395000 # Seuil pour le mode plan
elif self.mode == "page":
self.annotated_output_path = os.path.join(self.output_dir, "annotated_page.jpg")
self.detection_threshold = -65000 # Seuil pour le mode page
else:
raise ValueError(f"Mode inconnu : {mode}")
def load_image(self): def load_image(self):
"""Charge l'image spécifiée.""" """
Charge l'image spécifiée.
"""
self.image = cv2.imread(self.image_path) self.image = cv2.imread(self.image_path)
if self.image is None: if self.image is None:
raise FileNotFoundError(f"L'image {self.image_path} est introuvable.") raise FileNotFoundError(f"Image {self.image_path} non trouvée.")
return self.image return self.image
def preprocess_image(self): def preprocess_image(self):
"""Prétraite l'image pour la préparer à l'inférence.""" """
Prétraite l'image pour la détection.
"""
channels = cv2.split(self.image) channels = cv2.split(self.image)
binary_images = [] binary_images = []
for channel in channels: for channel in channels:
if self.binary_threshold is None:
_, binary_channel = cv2.threshold(channel, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
else:
_, binary_channel = cv2.threshold(channel, self.binary_threshold, 255, cv2.THRESH_BINARY_INV) _, binary_channel = cv2.threshold(channel, self.binary_threshold, 255, cv2.THRESH_BINARY_INV)
binary_images.append(binary_channel) binary_images.append(binary_channel)
@ -48,7 +64,9 @@ class ObjectDetectionPipeline:
return binary_image return binary_image
def detect_and_classify_objects(self): def detect_and_classify_objects(self):
"""Détecte et classe les objets présents dans l'image.""" """
Détecte et classe les objets dans l'image.
"""
if self.model is None: if self.model is None:
raise ValueError("Aucun modèle de classification fourni.") raise ValueError("Aucun modèle de classification fourni.")
@ -65,9 +83,10 @@ class ObjectDetectionPipeline:
x, y, w, h = cv2.boundingRect(contour) x, y, w, h = cv2.boundingRect(contour)
letter_image = self.image[y:y + h, x:x + w] letter_image = self.image[y:y + h, x:x + w]
predicted_class = self.model.predict(letter_image) # Prédit la classe de l'objet détecté
predicted_class = self.model.predict(letter_image, threshold=self.detection_threshold)
if predicted_class is None: if predicted_class is None:
print("Skipping object with invalid prediction.") print("Objet ignoré en raison d'une faible ressemblance.")
continue continue
class_counts[predicted_class] += 1 class_counts[predicted_class] += 1
@ -76,33 +95,34 @@ class ObjectDetectionPipeline:
return dict(sorted(class_counts.items())), detected_objects return dict(sorted(class_counts.items())), detected_objects
def save_results(self, class_counts, detected_objects): def save_results(self, class_counts, detected_objects):
"""Sauvegarde les résultats de détection et classification.""" """
# Sauvegarder l'image binaire Sauvegarde les résultats de la détection et de la classification.
"""
binary_output_path = os.path.join(self.output_dir, "binary_image.jpg") binary_output_path = os.path.join(self.output_dir, "binary_image.jpg")
cv2.imwrite(binary_output_path, self.binary_image) cv2.imwrite(binary_output_path, self.binary_image)
# Sauvegarder l'image annotée
annotated_image = self.image.copy() annotated_image = self.image.copy()
for (x, y, w, h, predicted_class) in detected_objects: for (x, y, w, h, predicted_class) in detected_objects:
cv2.rectangle(annotated_image, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.rectangle(annotated_image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(annotated_image, str(predicted_class), (x, y - 10), cv2.putText(annotated_image, str(predicted_class), (x, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
annotated_output_path = os.path.join(self.output_dir, "annotated_page.jpg")
cv2.imwrite(annotated_output_path, annotated_image)
# Sauvegarder les classes et leurs occurrences cv2.imwrite(self.annotated_output_path, annotated_image)
results_text_path = os.path.join(self.output_dir, "results.txt") results_text_path = os.path.join(self.output_dir, "results.txt")
with open(results_text_path, "w") as f: with open(results_text_path, "w") as f:
for class_name, count in class_counts.items(): for class_name, count in class_counts.items():
f.write(f"{class_name}: {count}\n") f.write(f"{class_name}: {count}\n")
def display_results(self, class_counts, detected_objects): def display_results(self, class_counts, detected_objects):
"""Affiche et sauvegarde les résultats.""" """
Affiche et sauvegarde les résultats.
"""
self.save_results(class_counts, detected_objects) self.save_results(class_counts, detected_objects)
plt.figure(figsize=(10, 5)) plt.figure(figsize=(10, 5))
plt.bar(class_counts.keys(), class_counts.values()) plt.bar(class_counts.keys(), class_counts.values())
plt.xlabel("Classes") plt.xlabel("Classes")
plt.ylabel("Nombre d'objets") plt.ylabel("Nombre d'objets détectés")
plt.title("Distribution des classes détectées") plt.title("Distribution des classes détectées")
plt.show() plt.show()

View file

@ -1,40 +1,44 @@
import os from main import analysis_mode
from collections import defaultdict
import numpy as np if analysis_mode == "plan":
import cv2 dataset_path = "data/catalogueSymbol"
allowed_classes = ['Figure1', 'Figure2', 'Figure3', 'Figure4', 'Figure5', 'Figure6']
model_path = "models/bayesian_modelPLAN.pth"
else:
dataset_path = "data/catalogue"
allowed_classes = ['2', 'd', 'I', 'n', 'o', 'u']
model_path = "models/bayesian_modelPAGE.pth"
from src.classifiers.bayesian import BayesianClassifier from src.classifiers.bayesian import BayesianClassifier
from collections import defaultdict
import os
import cv2
import numpy as np
if __name__ == "__main__": # Initialisation
# Chemin vers le dataset d'entraînement
dataset_path = "data/catalogue"
# Initialisation du classifieur Bayésien
bayesian_model = BayesianClassifier() bayesian_model = BayesianClassifier()
print("Début de l'entraînement...") print("Début de l'entraînement...")
# Dictionnaire pour stocker les caractéristiques par classe
class_features = defaultdict(list) class_features = defaultdict(list)
total_images = 0 total_images = 0
# Parcours des classes dans le dataset # Parcours des classes dans le dataset
for class_name in os.listdir(dataset_path): for class_name in os.listdir(dataset_path):
if class_name not in allowed_classes:
continue
class_folder_path = os.path.join(dataset_path, class_name) class_folder_path = os.path.join(dataset_path, class_name)
if not os.path.isdir(class_folder_path): if not os.path.isdir(class_folder_path):
continue # Ignorer les fichiers qui ne sont pas des dossiers continue
# Ajouter la classe au modèle si elle n'existe pas déjà
if class_name not in bayesian_model.classes: if class_name not in bayesian_model.classes:
bayesian_model.classes.append(class_name) bayesian_model.classes.append(class_name)
# Parcours des images dans le dossier de la classe
for image_name in os.listdir(class_folder_path): for image_name in os.listdir(class_folder_path):
image_path = os.path.join(class_folder_path, image_name) image_path = os.path.join(class_folder_path, image_name)
image = cv2.imread(image_path) image = cv2.imread(image_path)
if image is not None: if image is not None:
# Extraire les caractéristiques de l'image
features = bayesian_model.extract_features(image) features = bayesian_model.extract_features(image)
for feature in features: for feature in features:
class_features[class_name].append(feature) class_features[class_name].append(feature)
@ -45,12 +49,9 @@ if __name__ == "__main__":
if class_name in class_features: if class_name in class_features:
features = np.array(class_features[class_name]) features = np.array(class_features[class_name])
bayesian_model.feature_means[class_name] = np.mean(features, axis=0) bayesian_model.feature_means[class_name] = np.mean(features, axis=0)
bayesian_model.feature_variances[class_name] = np.var(features, axis=0) + 1e-6 # Éviter la division par zéro bayesian_model.feature_variances[class_name] = np.var(features, axis=0) + 1e-6
bayesian_model.class_priors[class_name] = len(features) / total_images bayesian_model.class_priors[class_name] = len(features) / total_images
print("Entraînement terminé.") print("Entraînement terminé.")
# Sauvegarde du modèle entraîné
model_path = "models/bayesian_modelPAGE.pth"
bayesian_model.save_model(model_path) bayesian_model.save_model(model_path)
print(f"Modèle sauvegardé dans : {model_path}") print(f"Modèle sauvegardé dans : {model_path}")