2025-01-07 15:14:21 +01:00
|
|
|
import os
|
|
|
|
import cv2
|
2025-01-05 22:53:09 +01:00
|
|
|
from src.pipeline import ObjectDetectionPipeline
|
2025-01-07 15:14:21 +01:00
|
|
|
from src.classifiers.bayesian import BayesianClassifier
|
2025-01-07 17:39:42 +01:00
|
|
|
from collections import defaultdict
|
2025-01-05 22:53:09 +01:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2025-01-07 15:14:21 +01:00
|
|
|
# Chemin vers le modèle entraîné
|
2025-01-07 17:39:42 +01:00
|
|
|
model_path = "models/bayesian_modelPAGE.pth"
|
2025-01-07 15:14:21 +01:00
|
|
|
|
|
|
|
# Chargement du modèle bayésien
|
|
|
|
print(f"Chargement du modèle bayésien depuis {model_path}")
|
|
|
|
bayesian_model = BayesianClassifier()
|
|
|
|
try:
|
|
|
|
bayesian_model.load_model(model_path)
|
|
|
|
print(f"Modèle bayésien chargé depuis {model_path}")
|
|
|
|
except Exception as e:
|
|
|
|
print(f"Erreur lors du chargement du modèle : {e}")
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
# Chemin de l'image de test
|
2025-01-05 22:53:09 +01:00
|
|
|
image_path = "data/page.png"
|
2025-01-07 15:14:21 +01:00
|
|
|
if not os.path.exists(image_path):
|
|
|
|
print(f"L'image de test {image_path} n'existe pas.")
|
|
|
|
exit(1)
|
2025-01-05 22:53:09 +01:00
|
|
|
|
2025-01-07 15:14:21 +01:00
|
|
|
# Initialisation du dossier de sortie
|
|
|
|
output_dir = "output"
|
|
|
|
if not os.path.exists(output_dir):
|
|
|
|
os.makedirs(output_dir)
|
2025-01-05 22:53:09 +01:00
|
|
|
|
2025-01-07 15:14:21 +01:00
|
|
|
# Initialisation de la pipeline
|
|
|
|
print("Initialisation de la pipeline...")
|
|
|
|
pipeline = ObjectDetectionPipeline(image_path=image_path, model=bayesian_model, output_dir=output_dir)
|
2025-01-05 22:53:09 +01:00
|
|
|
|
|
|
|
# Chargement de l'image
|
2025-01-07 15:14:21 +01:00
|
|
|
print("Chargement de l'image...")
|
|
|
|
try:
|
|
|
|
pipeline.load_image()
|
|
|
|
except FileNotFoundError as e:
|
|
|
|
print(e)
|
|
|
|
exit(1)
|
2025-01-05 22:53:09 +01:00
|
|
|
|
2025-01-07 15:14:21 +01:00
|
|
|
# Détection et classification des objets
|
|
|
|
print("Détection et classification des objets...")
|
|
|
|
try:
|
|
|
|
class_counts, detected_objects = pipeline.detect_and_classify_objects()
|
|
|
|
except Exception as e:
|
|
|
|
print(f"Erreur lors de la détection/classification : {e}")
|
|
|
|
exit(1)
|
2025-01-05 22:53:09 +01:00
|
|
|
|
2025-01-07 15:14:21 +01:00
|
|
|
# Sauvegarde et affichage des résultats
|
|
|
|
print("Sauvegarde et affichage des résultats...")
|
2025-01-05 22:53:09 +01:00
|
|
|
pipeline.display_results(class_counts, detected_objects)
|
2025-01-07 15:14:21 +01:00
|
|
|
|
2025-01-07 17:39:42 +01:00
|
|
|
# Chargement des comptes réels manuels avec distinction entre minuscule et majuscule
|
|
|
|
true_counts_manual = {
|
|
|
|
'A_': 30, 'A': 30, 'B_': 4, 'B': 0, 'C_': 14, 'C': 14, 'D_': 17, 'D': 17,
|
|
|
|
'E_': 68, 'E': 69, 'F_': 2, 'F': 2, 'G_': 8, 'G': 8, 'H_': 9, 'H': 9,
|
|
|
|
'I_': 26, 'I': 25, 'J_': 1, 'J': 0, 'K_': 0, 'K': 0, 'L_': 20, 'L': 19,
|
|
|
|
'M_': 15, 'M': 15, 'N_': 30, 'N': 29, 'O_': 37, 'O': 37, 'P_': 23, 'P': 22,
|
|
|
|
'Q_': 5, 'Q': 4, 'R_': 28, 'R': 27, 'S_': 26, 'S': 25, 'T_': 38, 'T': 38,
|
|
|
|
'U_': 25, 'U': 25, 'V_': 7, 'V': 6, 'W_': 1, 'W': 0, 'X_': 2, 'X': 2,
|
|
|
|
'Y_': 6, 'Y': 5, 'Z_': 3, 'Z': 2,
|
|
|
|
'1': 8, '2': 11, '3': 2, '4': 1, '5': 2, '6': 1, '7': 1, '8': 3, '9': 3
|
|
|
|
}
|
|
|
|
|
|
|
|
# Chargement des résultats détectés depuis results.txt
|
|
|
|
results_path = "output/results.txt"
|
|
|
|
detected_counts = defaultdict(int)
|
|
|
|
if os.path.exists(results_path):
|
|
|
|
with open(results_path, "r") as f:
|
|
|
|
for line in f:
|
|
|
|
char, count = line.strip().split(":")
|
|
|
|
detected_counts[char.strip()] = int(count.strip())
|
|
|
|
else:
|
|
|
|
print(f"Le fichier {results_path} n'existe pas.")
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
# Calcul du pourcentage de précision
|
|
|
|
print("Calcul du pourcentage de précision...")
|
|
|
|
total_true = sum(true_counts_manual.values())
|
|
|
|
common_keys = set(true_counts_manual.keys()) & set(detected_counts.keys())
|
|
|
|
|
|
|
|
correctly_detected = sum(min(detected_counts[char], true_counts_manual[char]) for char in common_keys)
|
|
|
|
precision = (correctly_detected / total_true) * 100 if total_true > 0 else 0
|
|
|
|
|
|
|
|
# Afficher les résultats
|
|
|
|
print("\nRésultats de comparaison :")
|
|
|
|
for char in sorted(common_keys):
|
|
|
|
print(f"{char}: True={true_counts_manual[char]}, Detected={detected_counts[char]}")
|
|
|
|
|
|
|
|
print(f"\nPrécision globale : {precision:.2f}%")
|
2025-01-07 15:14:21 +01:00
|
|
|
print(f"Les résultats ont été sauvegardés dans le dossier : {output_dir}")
|