2025-01-27 20:01:02 +01:00

22 lines
812 B
Python

import torch.nn as nn
import torch.optim as optim
# Define CNN Model
class CatDogClassifier(nn.Module):
def __init__(self, img_size=128):
super(CatDogClassifier, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * (img_size//4) * (img_size//4), 128) # Flatten size depends on image size
self.fc2 = nn.Linear(128, 2) # Output 2 classes (cat or dog)
self.relu = nn.ReLU()
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = x.view(x.size(0), -1) # Flatten
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x