46 lines
1.2 KiB
Python

import os
import cv2
import torch
import numpy as np
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("bayes_cat_dog_classifier.pth")
model.eval()
model.to(DEVICE)
IMG_SIZE = 128
def predict_image(image_path):
img = cv2.imread(image_path)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) / 255.0
img = np.transpose(img, (2, 0, 1)) # Convert to (C, H, W)
img_tensor = torch.tensor(img, dtype=torch.float32).unsqueeze(0).to(DEVICE) # Add batch dimension
model.eval() # Set model to evaluation mode
with torch.no_grad():
output = model(img_tensor)
predicted = torch.argmax(output, dim=1).item()
return "Dog" if predicted == 1 else "Cat"
# Cats
preds = []
for filename in os.listdir("dataset/test_set/cats/"):
img_path = os.path.join("dataset/test_set/cats/", filename)
prediction = predict_image(img_path)
preds.append(prediction)
print(preds.count("Cat"))
print(preds.count("Cat") / 1000)
# Dogs
preds = []
for filename in os.listdir("dataset/test_set/dogs/"):
img_path = os.path.join("dataset/test_set/dogs/", filename)
prediction = predict_image(img_path)
preds.append(prediction)
print(preds.count("Dog"))
print(preds.count("Dog") / 1000)