import os import cv2 import numpy as np import torch from torch.utils.data import DataLoader, TensorDataset from torch import nn, optim from BN import CatDogClassifier import time IMG_SIZE = 128 DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") """ This function loads all the images from the folder and labels them """ def load_images_from_folder(folder, label): data = [] for filename in os.listdir(folder): img_path = os.path.join(folder, filename) img = cv2.imread(img_path) if img is not None: img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) img = img / 255.0 data.append((img, label)) return data if __name__ == "__main__": # Loading the dataset cat_data = load_images_from_folder("dataset/training_set/cats", label=0) dog_data = load_images_from_folder("dataset/training_set/dogs", label=1) dataset = cat_data + dog_data np.random.shuffle(dataset) X = np.array([item[0] for item in dataset], dtype=np.float32) Y = np.array([item[1] for item in dataset], dtype=np.int64) X = np.transpose(X, (0, 3, 1, 2)) X_tensor = torch.tensor(X).to(DEVICE) Y_tensor = torch.tensor(Y).to(DEVICE) dataset = TensorDataset(X_tensor, Y_tensor) dataloader = DataLoader(dataset, batch_size=32, shuffle=True) model = CatDogClassifier() model = model.to(DEVICE) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) num_epochs = 20 start_time = time.time() model.train() for epoch in range(num_epochs): total_loss = 0 for images, labels in dataloader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() total_loss += loss.item() print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss/len(dataloader):.4f}") print(f"Time taken: {(time.time() - start_time):.2f} seconds") torch.save(model, f"bayes_cat_dog_classifier.pth")