import os import cv2 import torch import numpy as np from torch.utils.data import DataLoader, TensorDataset from torch import nn, optim from BN import CatDogClassifier import time # Define image size IMG_SIZE = 128 # Function to load images from a directory def load_images_from_folder(folder, label): data = [] for filename in os.listdir(folder): img_path = os.path.join(folder, filename) img = cv2.imread(img_path) # Load image if img is not None: img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) # Resize img = img / 255.0 # Normalize data.append((img, label)) return data # Load dataset cat_data = load_images_from_folder("dataset/training_set/cats", label=0) # Label 0 for cats dog_data = load_images_from_folder("dataset/training_set/dogs", label=1) # Label 1 for dogs # Combine and shuffle data dataset = cat_data + dog_data np.random.shuffle(dataset) # Convert to NumPy arrays X = np.array([item[0] for item in dataset], dtype=np.float32) # Image data Y = np.array([item[1] for item in dataset], dtype=np.int64) # Labels # Reshape to PyTorch format (N, C, H, W) X = np.transpose(X, (0, 3, 1, 2)) # Convert to (batch, channels, height, width) # Convert to PyTorch tensors X_tensor = torch.tensor(X).to("cuda") Y_tensor = torch.tensor(Y).to("cuda") # Create dataset and data loader dataset = TensorDataset(X_tensor, Y_tensor) dataloader = DataLoader(dataset, batch_size=32, shuffle=True) # Initialize model, loss, and optimizer model = CatDogClassifier() model = model.to("cuda") criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Training loop num_epochs = 25 start_time = time.time() for epoch in range(num_epochs): total_loss = 0 for images, labels in dataloader: optimizer.zero_grad() # Reset gradients outputs = model(images) # Forward pass loss = criterion(outputs, labels) # Compute loss loss.backward() # Backpropagation optimizer.step() # Update weights total_loss += loss.item() print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss/len(dataloader):.4f}") print(f"Time taken: {(time.time()-start_time):.2f} seconds") torch.save(model, "super_model.pth")