Compare commits
No commits in common. "dev" and "main" have entirely different histories.
14
README.md
14
README.md
@ -12,10 +12,9 @@ This project is meant as a way to gradually bring improvements on the bayesian n
|
|||||||
|
|
||||||
## Objectives 🎯
|
## Objectives 🎯
|
||||||
|
|
||||||
- [ ] Refactor the code
|
- [ ] Pretrain some models
|
||||||
- [ ] Generate some graphs to visualize the data
|
- [ ] Generate some graphs to visualize the data
|
||||||
- [X] Make a CLI
|
- [ ] Make a CLI
|
||||||
- [X] Pretrain some models
|
|
||||||
|
|
||||||
## Requirements 📋
|
## Requirements 📋
|
||||||
|
|
||||||
@ -26,11 +25,12 @@ To run the projet you need the following requirements:
|
|||||||
## Running the project 🚀
|
## Running the project 🚀
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
$ python -m venv .venv
|
python -m venv .venv
|
||||||
$ source .venv/bin/activate
|
source .venv/bin/activate
|
||||||
$ pip install requirements.txt
|
pip install requirements.txt
|
||||||
|
|
||||||
$ python main.py
|
python train.py # If you want to train your own model
|
||||||
|
python main.py
|
||||||
```
|
```
|
||||||
|
|
||||||
## Development 🔨
|
## Development 🔨
|
||||||
|
Binary file not shown.
82
main.py
82
main.py
@ -1,54 +1,46 @@
|
|||||||
import inquirer
|
|
||||||
import typer
|
|
||||||
import pyfiglet
|
|
||||||
from yaspin import yaspin
|
|
||||||
from train import train_model
|
|
||||||
from predict import make_predictions
|
|
||||||
import os
|
import os
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
choice = ""
|
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
def main():
|
model = torch.load("bayes_cat_dog_classifier.pth")
|
||||||
choice = inquirer.list_input("What would you like to do?", choices=["Run tests", "Train a model", "Visualize training data"])
|
model.eval()
|
||||||
|
model.to(DEVICE)
|
||||||
if choice == "Run tests":
|
|
||||||
predictions()
|
|
||||||
elif choice == "Train a model":
|
|
||||||
training()
|
|
||||||
else:
|
|
||||||
visualize()
|
|
||||||
|
|
||||||
def predictions():
|
IMG_SIZE = 128
|
||||||
default_cats_path = "dataset/test_set/cats/"
|
|
||||||
default_dogs_path = "dataset/test_set/dogs/"
|
|
||||||
models_base_path = "models/"
|
|
||||||
|
|
||||||
model_name = inquirer.list_input("Select the model to use", choices=os.listdir(models_base_path))
|
def predict_image(image_path):
|
||||||
model_path = os.path.join(models_base_path, model_name)
|
img = cv2.imread(image_path)
|
||||||
|
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) / 255.0
|
||||||
|
img = np.transpose(img, (2, 0, 1)) # Convert to (C, H, W)
|
||||||
|
img_tensor = torch.tensor(img, dtype=torch.float32).unsqueeze(0).to(DEVICE) # Add batch dimension
|
||||||
|
|
||||||
dataset = inquirer.list_input("Select the testing data (default dataset)", choices=['Cats', 'Dogs'])
|
model.eval() # Set model to evaluation mode
|
||||||
|
with torch.no_grad():
|
||||||
if dataset == "Cats":
|
output = model(img_tensor)
|
||||||
with yaspin(text="Making predictions...", color="cyan") as sp:
|
predicted = torch.argmax(output, dim=1).item()
|
||||||
make_predictions(model_path, default_cats_path, "Cat", sp)
|
|
||||||
sp.ok("DONE")
|
|
||||||
else:
|
|
||||||
with yaspin(text="Making predictions...", color="cyan") as sp:
|
|
||||||
make_predictions(model_path, default_dogs_path, "Dog", sp)
|
|
||||||
sp.ok("DONE")
|
|
||||||
|
|
||||||
def training():
|
return "Dog" if predicted == 1 else "Cat"
|
||||||
text = inquirer.text(message="Enter the name of the new model")
|
|
||||||
with yaspin(text="Training new model...", color="cyan") as sp:
|
|
||||||
train_model(text, sp)
|
|
||||||
sp.ok("DONE")
|
|
||||||
|
|
||||||
|
|
||||||
def visualize():
|
|
||||||
print("Not available yet...\n")
|
|
||||||
main()
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
# Cats
|
||||||
print(pyfiglet.figlet_format("Cats and Dogs"))
|
preds = []
|
||||||
print(pyfiglet.figlet_format("classification"))
|
for filename in os.listdir("dataset/test_set/cats/"):
|
||||||
typer.run(main)
|
img_path = os.path.join("dataset/test_set/cats/", filename)
|
||||||
|
prediction = predict_image(img_path)
|
||||||
|
preds.append(prediction)
|
||||||
|
|
||||||
|
print(preds.count("Cat"))
|
||||||
|
print(preds.count("Cat") / 1000)
|
||||||
|
|
||||||
|
# Dogs
|
||||||
|
preds = []
|
||||||
|
for filename in os.listdir("dataset/test_set/dogs/"):
|
||||||
|
img_path = os.path.join("dataset/test_set/dogs/", filename)
|
||||||
|
prediction = predict_image(img_path)
|
||||||
|
preds.append(prediction)
|
||||||
|
|
||||||
|
print(preds.count("Dog"))
|
||||||
|
print(preds.count("Dog") / 1000)
|
Binary file not shown.
39
predict.py
39
predict.py
@ -1,39 +0,0 @@
|
|||||||
import os
|
|
||||||
import cv2
|
|
||||||
import torch
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
IMG_SIZE = 128
|
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
DEVICE = torch.device("cuda")
|
|
||||||
elif torch.mps.is_available():
|
|
||||||
DEVICE = torch.device("mps")
|
|
||||||
else:
|
|
||||||
DEVICE = torch.device("cpu")
|
|
||||||
|
|
||||||
def predict_image(image_path, model):
|
|
||||||
img = cv2.imread(image_path)
|
|
||||||
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) / 255.0
|
|
||||||
img = np.transpose(img, (2, 0, 1)) # Convert to (C, H, W)
|
|
||||||
img_tensor = torch.tensor(img, dtype=torch.float32).unsqueeze(0).to(DEVICE) # Add batch dimension
|
|
||||||
|
|
||||||
model.eval()
|
|
||||||
with torch.no_grad():
|
|
||||||
output = model(img_tensor)
|
|
||||||
predicted = torch.argmax(output, dim=1).item()
|
|
||||||
|
|
||||||
return "Dog" if predicted == 1 else "Cat"
|
|
||||||
|
|
||||||
def make_predictions(model_path, dataset_path, type, spinner):
|
|
||||||
model = torch.load(model_path, map_location=DEVICE)
|
|
||||||
model.eval()
|
|
||||||
model.to(DEVICE)
|
|
||||||
|
|
||||||
preds = []
|
|
||||||
for filename in os.listdir(dataset_path):
|
|
||||||
img_path = os.path.join(dataset_path, filename)
|
|
||||||
prediction = predict_image(img_path, model)
|
|
||||||
preds.append(prediction)
|
|
||||||
|
|
||||||
spinner.write(f'Precision : {preds.count(type) / 1000 * 100}%')
|
|
@ -1,9 +1,36 @@
|
|||||||
inquirer==3.4.0
|
contourpy==1.3.1
|
||||||
|
cycler==0.12.1
|
||||||
|
filelock==3.17.0
|
||||||
|
fonttools==4.55.6
|
||||||
|
fsspec==2024.12.0
|
||||||
|
Jinja2==3.1.5
|
||||||
|
kiwisolver==1.4.8
|
||||||
|
MarkupSafe==3.0.2
|
||||||
matplotlib==3.10.0
|
matplotlib==3.10.0
|
||||||
|
mpmath==1.3.0
|
||||||
|
networkx==3.4.2
|
||||||
numpy==2.2.2
|
numpy==2.2.2
|
||||||
|
nvidia-cublas-cu12==12.4.5.8
|
||||||
|
nvidia-cuda-cupti-cu12==12.4.127
|
||||||
|
nvidia-cuda-nvrtc-cu12==12.4.127
|
||||||
|
nvidia-cuda-runtime-cu12==12.4.127
|
||||||
|
nvidia-cudnn-cu12==9.1.0.70
|
||||||
|
nvidia-cufft-cu12==11.2.1.3
|
||||||
|
nvidia-curand-cu12==10.3.5.147
|
||||||
|
nvidia-cusolver-cu12==11.6.1.9
|
||||||
|
nvidia-cusparse-cu12==12.3.1.170
|
||||||
|
nvidia-nccl-cu12==2.21.5
|
||||||
|
nvidia-nvjitlink-cu12==12.4.127
|
||||||
|
nvidia-nvtx-cu12==12.4.127
|
||||||
opencv-python==4.11.0.86
|
opencv-python==4.11.0.86
|
||||||
pyfiglet==1.0.2
|
packaging==24.2
|
||||||
|
pillow==11.1.0
|
||||||
|
pyparsing==3.2.1
|
||||||
|
python-dateutil==2.9.0.post0
|
||||||
|
setuptools==75.8.0
|
||||||
|
six==1.17.0
|
||||||
|
sympy==1.13.1
|
||||||
torch==2.5.1
|
torch==2.5.1
|
||||||
torchvision==0.20.1
|
torchvision==0.20.1
|
||||||
typer==0.15.1
|
triton==3.1.0
|
||||||
yaspin==3.1.0
|
typing_extensions==4.12.2
|
||||||
|
23
train.py
23
train.py
@ -6,17 +6,14 @@ from torch.utils.data import DataLoader, TensorDataset
|
|||||||
from torch import nn, optim
|
from torch import nn, optim
|
||||||
from BN import CatDogClassifier
|
from BN import CatDogClassifier
|
||||||
import time
|
import time
|
||||||
from yaspin import yaspin
|
|
||||||
|
|
||||||
IMG_SIZE = 128
|
IMG_SIZE = 128
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
DEVICE = torch.device("cuda")
|
|
||||||
elif torch.mps.is_available():
|
|
||||||
DEVICE = torch.device("mps")
|
|
||||||
else:
|
|
||||||
DEVICE = torch.device("cpu")
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This function loads all the images from the folder and labels them
|
||||||
|
"""
|
||||||
def load_images_from_folder(folder, label):
|
def load_images_from_folder(folder, label):
|
||||||
data = []
|
data = []
|
||||||
for filename in os.listdir(folder):
|
for filename in os.listdir(folder):
|
||||||
@ -28,9 +25,7 @@ def load_images_from_folder(folder, label):
|
|||||||
data.append((img, label))
|
data.append((img, label))
|
||||||
return data
|
return data
|
||||||
|
|
||||||
def train_model(model_name, spinner):
|
if __name__ == "__main__":
|
||||||
|
|
||||||
spinner.write(f'Using the following device : {DEVICE}')
|
|
||||||
|
|
||||||
# Loading the dataset
|
# Loading the dataset
|
||||||
cat_data = load_images_from_folder("dataset/training_set/cats", label=0)
|
cat_data = load_images_from_folder("dataset/training_set/cats", label=0)
|
||||||
@ -50,7 +45,7 @@ def train_model(model_name, spinner):
|
|||||||
dataset = TensorDataset(X_tensor, Y_tensor)
|
dataset = TensorDataset(X_tensor, Y_tensor)
|
||||||
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
|
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
|
||||||
|
|
||||||
model = CatDogClassifier(img_size=IMG_SIZE)
|
model = CatDogClassifier()
|
||||||
model = model.to(DEVICE)
|
model = model.to(DEVICE)
|
||||||
criterion = nn.CrossEntropyLoss()
|
criterion = nn.CrossEntropyLoss()
|
||||||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||||
@ -69,8 +64,8 @@ def train_model(model_name, spinner):
|
|||||||
optimizer.step()
|
optimizer.step()
|
||||||
total_loss += loss.item()
|
total_loss += loss.item()
|
||||||
|
|
||||||
spinner.write(f"Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss/len(dataloader):.4f}")
|
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss/len(dataloader):.4f}")
|
||||||
|
|
||||||
spinner.write(f"Time taken: {(time.time() - start_time):.2f} seconds")
|
print(f"Time taken: {(time.time() - start_time):.2f} seconds")
|
||||||
|
|
||||||
torch.save(model, f"models/{model_name}.pth")
|
torch.save(model, f"bayes_cat_dog_classifier.pth")
|
Loading…
x
Reference in New Issue
Block a user